Home

Technology

Bubble generators

Filters

Probiotics

Blog

About

Innovative Technologies for ultrafine bubble generation

In Technology by Erik van Berkum Published: Tuesday, 23 May 2017

When making a bubble you put a gas into the liquid, a bubble is family of a droplet which is a liquid in a gas. Another member of the bubble and droplet family is a particle which is a solid in a gas or in liquid. It's important to distinguish these three terms from each other. There are a few methods to make bubbles, hydrodynamically, acoustic, optic and via particle cavitation. The most cost-effective method and most efficient method to make ultrafine bubbles is hydrodynamically. Hydrodynamics is a branch of physics that deals with motion on fluids and the forces acting on solid bodies immersed in fluids and in motion relative to them. To say it simple to create a bubble you need a moving liquid, add a gas and bring a force on the gas and liquid and the bubbles are created. In everyday life when you open a can of beer or a bottle of coke, by the change in pressure (the force) the bubbles are created, this is visible by the eye and by the sound.

1982 was the first time to publish an article about nano bubbles and until recently the existence of nano bubbles was heavily debated, the recent hype in ultrafine bubble technology or nano bubble technology is caused by two factors, first, there is now equipment on the market available that can measure ultrafine bubbles size and density and now most of the scientists agree that nano bubbles exist. Second the big advantage of the measuring equipment was that ultrafine bubble makers are now able to further develop and optimize their ultrafine bubble generators and they further develop applications.

We can distinguish the following production methods of fine bubbles, the first 3 methods are described in more detail:

  1. Pressurized dissolution 
  2. Rotational Flow
  3. Static mixer
  4. Ultrasonic (Supersonic vibration)
  5. Nozzle (Ejector)
  6. Oscillator
  7. Venturi
  8. Mixed vapor direct contact condensation

Pressurized dissolution method

This method of ultrafine bubble generation is based on the principles of Henry`s Law, which relates the concentration of a gas to the partial pressure. This means that more gas can be dissolved into a solution at a higher pressure. The principle of the ultrafine bubble generator is as follows: Via a venturi system the liquid and the gas is mixed together, in the next step in the mixing box the gas is melted into the water via pressurization. In the last step via a nozzle the water and gas is discharged. Due to drastic drop in pressure of the supersaturated liquid gas solution, the gas is expelled as fine bubbles and ultrafine bubbles in the liquid. The figure illustrates the process.

Rotational flow

Rotational flow is also often called Swirl Method or Spiral Flow. This fine bubble generator generates bubbles according to the Bernoulli's principle. In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in pressure or a decrease in the fluid's potential energy. The principle is named after Daniel Bernoulli who published it in his book "Hydrodynamica" in 1738. Centuries later fine bubble generators are made based on this principle. The first product based on this technology is the Ranque-Hilsch Vortex Tube in 1933. Followed 50 years later by the Swirling jet flame. In the mid nineties the first swirling type micro-bubbles was invented in Japan.

The principle of the fine bubble generator is as follows: water is put into a cylindrical tank from the top-side and made to flow in a spiral downwards. From the center bottom of the cylinder the gas is sucked in. The rotating water is sheared to the top of the cylinder producing fine bubbles.

Static Mixer

The static mixer has its origin from mixing two liquids, the first patent for a static mixer was filed in 1965. Instead of mixing two liquids there is also the possibility of mixing a liquid and a gas. The benefits of the static mixers is that they can treat large volumes of water at once. They are not sensitive to clogging. The gaiaGaLF technology is based on this principle.

ultrafine bubble generator | nano bubble generator | micro bubble generator | static mixer | rotational flow | pressurized dissolution method |

Recent Posts

Ultrafine Bubbles and the effect on Seed Germination

Nano Bubbles are useful in accelerating the metabolism of living organisms, but the mechanism is not yet well understood. In a study, they investigated the production of reactive oxygen species (ROS) by Nano Bubbles and the effect on seed germination. The conclusion of the study was seeds in nano bubble water had a higher germination rate than all those submerged in the different other conventional used solutions.

Project report water treatment lake gaiaGaLF nano bubbles

A contaminated pond which was used for irrigation was treated for 40 days with nano bubbles. After treatment the algae contamination problems was solved. For the treatment the gaiaGaLF nano bubble generator was used, in combination with an connected oxygen concentrator.

Demonstration gaiaGaLF submersible unit

The gaiaGaLF submersible unit is a, complete unit with the low-pressure mixing valve technique that effectively and efficiently saturates liquids with gases over 5 times the levels of conventional technologies. The unit moves 113 liters of water per minute and dissolves 4 liters of oxygen per minute creating a high DO content and ultrafine bubbles in the water.

Strong increase in cannabis production with bubble Oxygenation

Root systems require oxygen for aerobic respiration. Reduced levels of oxygen in the rootzone, slow down plant growth and increase susceptibility of diseases. Indoor grown plants in closed water systems have often a lack of oxygen and need additional oxygen supply. By delivering ultrafine bubble to the rootzone of the plant, you increase the levels of oxygen and the water get negatively electrically charged this promotes nutrient uptake and hair root growth. Read the whole article to see what experience cannabis growers have to say about the ultrafine bubble system.

Lab demonstration miniGaLF

The miniGaLF is ACNITI`s entry level GaLF model designed for companies, universities, research institutes and individuals that want to learn about Ultrafine bubble technology. In this blog a movie is shown of the connections and the performance to create ultrafine bubble (nano bubbles) with high DO water.

Cultivate attractive lettuce with no more tipburn

Manoa lettuce is a lettuce variety susceptible to tipburn. Tipburn is the drying and dying of leaf tissue along the edges of the leaf. During a test at a grower in Hawaii it was shown that by increasing the DO levels and adding ultrafine bubbles, reduction of tipburn is realized and quality and production improvements are made.

What's in the name: ultrafine bubbles or nano bubbles?

Interested to know why nanobubbles are officially called ultrafine bubbles? In this article we explain the reasons why the ISO technical committee has decided to use the official name ultrafine bubbles instead of nanobubbles.

Payments

acniti accepts bank payments, PayPal and many major credit cards Visa, MasterCard, American Express, Discover, JCB, Diner's Club and EnRoute.

Processwire loving it

A write-up of how the acniti website is built, which tools are used for development, like PhpStorm and Ubuntu! The website is built with Processwire and the hosting is on AWS. Also insight is given in which Amazon Web Services are used and how they work together. The last part of the article shows tools that help write the content and how the site is promoted on the major and branch specific social networks.

Laundry clean with a bubble boost

Washing of surfaces and laundry is one of the promising areas were ultrafine bubbles can make a difference in the application. Reducing the amount of detergent, has a positive effect by reducing pollution, washing laundry without detergent, would greatly benefit the environment. Ultrafine bubbles can lower the surface tension of water, the large amounts of oxygen molecules in bubbles charge the water negative.

Ozone bubbles for water treatment

Research into ozone ultrafine bubble technology for the treatment of captured produce wash water. The white paper shows that their are benefits in using the technology, by better disinfection and savings in ozone can be obtained.

Bubble sizes and properties

Bubbles are gas filled cavities in water. The contact area between bubbles in water filled with tiny bubbles is much larger than water filled with bigger bubbles. The gas pressure inside a small bubble is higher than in a large bubble, therefore the surface tension of a small bubble is higher as well.

Self-cleaning inlet filter explained

Self-cleaning Filters prevent pumps from blocking and make aeration more efficient

Self-cleaning inlet filter demonstration

Video: Rotorflush Self-cleaning inlet filter explained

Ultrafine bubble generation

There are various technologies to generate ultrafine bubbles. This article gives an overview of the most used techniques, such as pressurized dissolution, static mixers, and rotational flow.

Contact

acniti contact page, for all questions, quotes and more information about the products.

ISO fine bubbles

Great things happen when the world agrees, fine bubbles are an innovative technology, but without proper standards for the industry development, there are obstacles. From 2013 ISO started the creation of an International Standard for fine bubbles popularly know as nano bubbles.

gaiaGaLF lake Ida Anne

Lake Ida Anne has a growing problem with algae in spring and summer. A large number of nutrients are available in the lake, and this promotes algae growth. The city of Langford tested the Gaia Oxygenation System to combat the algae, with great success.

Long distance fish transport with fine bubbles

A new innovative way to transport fish while sleeping is almost ready to go onto the market. A combination of CO2 and ultrafine bubbles make this possible.

Brand Assets

acniti brand assets and resources, corporate house-style

Ultrafine bubbles on camera

Ultrafine bubbles movie, movie made with the Malvern NanoSight.

miniGaLF Plus

The miniGALF is IDEC`s entry level GaLF model designed for first experiences with ultrafine bubble technology. The miniGaLF -Plus enables higher concentration of ultrafine bubbles by multi-passes of water through the miniGaLF.

The fine bubble breakthrough

Imagine your kitchen floor or bathroom tiles being cleaned by very tiny bubbles. Sounds great, a new technological era is dawning.

Smart people talk bubbles, the water innovation

Bubbles are all around us, in our foods, beer, pop drinks bread and cheese, but also in the bricks of our house. Bubbles are gas-filled cavities in water, the lifetime of a bubble is short at most a few minutes, only ultra-fine bubbles are stable for longer periods like months, that is making them very special and that enables us to change the properties of water.

Photostream