Innovative Technologies for ultrafine bubble generation

  • Published: Tuesday, 23 May 2017
  • /
  • Modified: Sunday, 15 March 2020

When making a bubble you put a gas into the liquid, a bubble is family of a droplet which is a liquid in a gas. Another member of the bubble and droplet family is a particle which is a solid in a gas or in liquid. It's important to distinguish these three terms from each other. There are a few methods to make bubbles, hydrodynamically, acoustic, optic and via particle cavitation. The most cost-effective method and most efficient method to make ultrafine bubbles is hydrodynamically. Hydrodynamics is a branch of physics that deals with motion on fluids and the forces acting on solid bodies immersed in fluids and in motion relative to them. To say it simple to create a bubble you need a moving liquid, add a gas and bring a force on the gas and liquid and the bubbles are created. In everyday life when you open a can of beer or a bottle of coke, by the change in pressure (the force) the bubbles are created, this is visible by the eye and by the sound.

1982 was the first time to publish an article about nano bubbles and until recently the existence of nano bubbles was heavily debated, the recent hype in ultrafine bubble technology or nano bubble technology is caused by two factors, first, there is now equipment on the market available that can measure ultrafine bubbles size and density and now most of the scientists agree that nano bubbles exist. Second the big advantage of the measuring equipment was that ultrafine bubble makers are now able to further develop and optimize their ultrafine bubble generators and they further develop applications.

Basically, there are two types of nano bubble generation technologies, first there are gas-water circulation types of nano bubble generators. Second there is a gas-water pressurization-decompression also often referred to as pressurized dissolution type of nano bubble generator. Most units are based on one principle or the other or a combination of both.

We can distinguish the following production methods of fine bubbles; the first 4 methods are described in more detail:

  1. Pressurized dissolution 
  2. Rotational Flow
  3. Turbulent Static mixer
  4. Ejector Nozzle
  5. Ultrasonic (Supersonic vibration)
  6. Oscillator
  7. Venturi
  8. Mixed vapor direct contact condensation

Pressurized dissolution method

This method of ultrafine bubble generation is based on the principles of Henry`s Law, which relates the concentration of a gas to the partial pressure. This means that more gas can be dissolved into a solution at a higher pressure. The principle of the ultrafine bubble generator is as follows: Via a venturi system the liquid and the gas is mixed together, in the next step in the mixing box the gas is melted into the water via pressurization. In the last step via a nozzle the water and gas is discharged. Due to drastic drop in pressure of the supersaturated liquid gas solution, the gas is expelled as fine bubbles and ultrafine bubbles in the liquid. The figure illustrates the process.

  1. Liquid is pumped into the unit under pressure.
  2. By narrowing the size of the pipe, the speed of the incoming liquid flow is increased, which converts most of the pump pressure into dynamic pressure, thus reducing static pressure and air being suctioned through negative pressure.
  3. After the liquid and suctioned gas become saturated with bubbles, the liquid/gas flow is sent through a wider pipe to reduce the speed of the flow, where dynamic pressure is converted back to static pressure and the process of pressurized dissolution of gas takes place.
  4. After the gas is completely dissolved into the liquid, the liquid/gas is ejected at once using atmospheric pressure, causing the liquid to become over-saturated, and massive ultra fine nano-bubbles are released.

 

 

Ultrafine bubble nanobubble generation technology pressurized dissolution method

Rotational flow

Rotational flow is also often called Swirl Method or Spiral Flow. This fine bubble generator generates bubbles according to the Bernoulli's principle. In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in pressure or a decrease in the fluid's potential energy. The principle is named after Daniel Bernoulli who published it in his book "Hydrodynamica" in 1738. Centuries later fine bubble generators are made based on this principle. The first product based on this technology is the Ranque-Hilsch Vortex Tube in 1933. Followed 50 years later by the Swirling jet flame. In the mid-nineties the first swirling type micro-bubbles was invented in Japan.

The principle of the fine bubble generator is as follows: water is put into a cylindrical tank from the top-side and made to flow in a spiral downwards. From the center bottom of the cylinder the gas is sucked in. The rotating water is sheared to the top of the cylinder producing fine bubbles. However its generally acknowledged in the ultrafine bubble industry that the bubble concentration of the pressurized dissolution method is higher than the rotational flow.

Ultrafine bubble nanobubble generation technology swirl method

Turbulent Static Mixer

The static mixer has its origin from mixing two liquids, the first patent for a static mixer was filed in 1965. Instead of mixing two liquids there is also the possibility of mixing a liquid and a gas. This technology is based on the principle of creating a vortex and bringing into the vortex a gas very effectively. Due to the turbulent flow gas will break the vortex and the collisions  between water and gas creates the nanobubbles. The benefits of the static mixers are that they have a relative simple design and they can treat large volumes of water at once with relative little energy compared to many of the other above nanobubble generators. Finally they are not sensitive to clogging. The acniti Turbiti technology is a combination of the turbulent static mixer and the Ejector Nozzle.

Ultrafine bubble nanobubble generation technology static mixer

Ejector Nozzle

In the ejector nozzle nanobubble generator type, liquid flow channels in the cylindrical generator are designed to shrink and stepwise enlarge. The gas is brought in under negative pressure at the most reduced pressure point and reduced to a number of nanobubbles by cavitation. In this device the water flow is highly turbulent and the gas is reduced to nanobubbles by cavitation. Ejector nozzles are closely related to hydrodynamic cavitation generators, with this method cavitation is generated by the flow of liquid through a simple geometry under controlled conditions. In this nanobubble generator when the pressure falls below the vapor pressure of the liquid, the liquid flashes, generating a number of cavities. The cavities collapse when the pressure recovers. The collapse of the cavitation bubbles starts some physicochemical effects such as shock waves, shear forces and chemical reactions. Free radicals are sometimes generated by the these processes.



Published





@nano_bubbles
acniti | Ultrafine Bubbles and the effect on Seed Germination but also on wiskey and beer malting bit.ly/2JfabiP
May 31, 2018






@nano_bubbles
acniti | Laundry clean with a bubble boost bit.ly/2vHLD8w
#ufb #nanobubble #detergent #ecobubble #finebubble #zaboon #laundry
Jul 26, 2017








acniti is specialized in the sales and marketing of ultrafine bubble and nanobubble technology, to accelerate growth.

Bubble technology is the next revolution in water and liquids to change their properties by dissolving gases to enhance biological processes, to innovate cleaning and disinfection in a wide range of applications.

Products



RF200

Smart self-cleaning filters

Contact Us

acniti LLC
1-2-9 Nyoidani
Minoh Osaka
〒562-0011
Japan