

acniti LLC 1-2-9 Nyoidani Minoh Osaka 562-0011 Japan

Underwater Oxidant Meter

The underwater oxidant meter is an advanced measuring instrument that detects oxidants in salt and brackish water without the need for reagents.

Underwater Oxidant Meter

Underwater Oxidant Meter

- Reagent-free measurement No chemicals required
- Automatic electrode cleaning
- Quick measurements within 1 minute
- Suitable for a variety of water conditions
- No waste of water
- Resistant to harsh environments
- Easy integration into existing systems
- Suitable for a variety of applications
- Wall mounting (and pipe mounting possible)

What does an Underwater Oxidant Meter do?

The Underwater Oxidant Meter is an advanced measuring instrument that detects oxidants in salt and brackish water without the need for reagents. Thanks to potential pulse voltammetry with three electrodes, this meter provides fast and accurate measurements and remains reliable due to an innovative self-cleaning system.

An underwater Oxidant meter must not be confused with an ORP / Redox meter. See the technology overview:

Underwater Oxidant Meter	ORP / Redox Meter
Potential Pulse Voltammetry (PPV) with three electrodes	Electrochemical potential difference between two electrodes
Direct measurement of oxidants (e.g., chlorine, ozone, H_2O_2)	General oxidation-reduction potential (a combined effect of all redox species)
☐ No reagents required	\square No reagents, but indirect reading
Typically less frequent due to stable design	eNeeds regular calibration for accuracy
☐ Yes, optimized for marine environments	\triangle Can be affected by high ionic strength and biofouling
☐ Self-cleaning system helps avoid biofouling	$\hfill \square$ Prone to fouling, requires regular maintenance
☐ Submersible and rugged	△ Limited submersion, not always pressure-rated
fast, real-time detection	Moderate to slow, stabilizes over time
☐ High — can distinguish between oxidants	☐ Low — gives a general redox state only
	Meter Potential Pulse Voltammetry (PPV) with three electrodes Direct measurement of oxidants (e.g., chlorine, ozone, H ₂ O ₂) No reagents required Typically less frequent due to stable design Yes, optimized for marine environments Self-cleaning system helps avoid biofouling Submersible and rugged Fast, real-time detection High — can distinguish

Technology overview
Underwater Oxidant
Meter
ORP / Redox Meter
Can drift, affected by
contamination or coating on the
probe

Why an Underwater Oxidant Meter?

In various industrial and environmental applications, it is essential to monitor the presence of oxidants in water. The Underwater Oxidant Meter allows you to control water quality parameters, allowing you to efficiently:

- Avoid unnecessary water consumption
- Works sustainably and is environmentally friendly without chemical reagents
- Saves costs on maintenance through automatic cleaning

Applications of the Underwater Oxidant Meter.

The Underwater Oxidant Meter is used in various industries and applications. When you're looking for general water quality or are on a budget, consider an ORP meter. Perfect applications for the Underwater Oxidant Meter:

- Water Treatment Plants Optimize Disinfection Processes.
- Aquaculture in seawater
- **Precise** oxidant monitoring (e.g., ozone dosing)
- **Seawater sterilization in fisheries** Ensure a clean environment for aquaculture
- Wastewater treatment in factories Meet environmental standards
- **Swimming pools and spas** Maintain safe water quality
- Drinking water supply and sewage management Prevent contamination

Details

• **Industrial processes** - Control oxidation-related chemical reactions

Specifications

Feature

I catalo	Doulis			
Measurement Purpose	Oxidants in seawater and brackish water			
Measurement Principle	Three-electrode potential pulse voltammetry			
Measuring method	Microelectrode system with self-cleaning beads			
Measuring range	0-2.00 mg/L (Standard) - Optional: 1.00/3.00/5.00 mg/L			
Repeatability	±5% of full scale plus one digit			
Response time	1 minute (90% response)			
Temperature compensation Automatic compensation with a thermistor				
	pH range: 5.8-8.6 (variation within ±0.5 pH)			
	Conductivity: ≥10 mS/m (variation within ±10 mS/m)			
Conditions	Water temperature: 0 - 45°C (no freezing)			
	Ambient temperature: -10 - 45°C			
	Humidity: ≤90% RH (no condensation)			
Installation	Wall mounting (Optional: Tube mounting with U-bolt kit)			
Resolution	0.01 mg/L			
Signal Output	DC 4- 20mA (Isolated, maximum load 500Ω)			
Alarm outputs	Upper and lower limit alarms (1a each)			

Feature	Details	
	Adjustable range:	
Control output	- ±10% of full scale	
Control output	- ±5% of full scale	
	- ±2.5% of full scale	
Power supply	AC 100-240V (±10% variation) 50/60Hz	
Pressure resistance	0.5 MPa	
	1. Stainless steel Tube Stand (1500 mm long)	
Ontional accessories	2. Attachment kit for tube (50A)	
Optional accessories	3. Connection box (sensor cable extension).	
	4. Dedicated extension cable (available in 10 m lengths).	

eoxi-40

	Beschreibung	Metrisch	Kaiserlich
1	Model name	EOXI-40	EOXI-40
2	Model number	EOXI-40	EOXI-40